2024
- X. Zhang, E.C. Landsness, L.M. Brier. W. Chen, M.J. Tang, H. Miao, J. Lee, M.A. Anastasio, and J.P. Culver, “Identifying Functional Brain Networks of Spatiotemporal Wide-Field Calcium Imaging Data via a Long Short-Term Memory Autoencoder.” arXiv, in press (2024)
- P. Chen, S. Park, R. M. Cam, H. Huang, A. A. Oraevsky, U. Villa, and M. A. Anastasio, “Learning a Filtered Backprojection Reconstruction Method for Photoacoustic Computed Tomography with Hemispherical Measurement Geometries.” arXiv, in press (2024).
- S. Crafts, M. A. Anastasio, and U. Villa, “Optimizing quantitative photoacoustic imaging systems: The Bayesian Cramer-Rao bound approach.” Inverse Problems, In press, 2024.
- A. Makeev, K. Li, M. A. Anastasio, A. Emig, P. Jahnke, S. J. Glick, “Automated assessment of task-based performance of digital mammography and tomosynthesis systems using an anthropomorphic breast phantom and deep learning-based scoring“, Journal of Medical Imaging, in press (2024).
- Y. Lin, S. Feng, J. Theiler, Y. Chen, U. Villa, J. Rao, J. Greenhall, C. Pantea, M. A. Anastasio, B. Wohlberg, “Physics and Deep Learning in Computational Wave Imaging“, arXiv, in press (2024).
- G. Jeong, U. Villa, M. A. Anastasio, “Revisiting the joint estimation of initial pressure and speed-of-sound distributions in photoacoustic computed tomography with consideration of canonical object constraints”, arXiv, in press (2024)
- G. Jeong, F. Li, T. M. Mitcham, U. Villa, N. Duric and M. A. Anastasio, “Investigating the Use of Traveltime and Reflection Tomography for Deep Learning-Based Sound-Speed Estimation in Ultrasound Computed Tomography“, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, (2024).
- L. Lozenski, R. M. Cam, M. A. Anastasio and U. Villa, “ProxNF: Neural Field Proximal Training for High-Resolution 4D Dynamic Image Reconstruction“, IEEE Transactions on Computational Imaging, (2024).
- R. Deshpande, M. A. Anastasio, and F. J. Brooks, “A method for evaluating deep generative models of images for hallucinations in high-order spatial context“, Pattern Recognition Letters, in press (2024).
- Y. Luo, H. Huang, K. Sastry, P. Hu, X. Tong, J. Kuo, S. Na, U. Villa, M. A. Anastasio, and L. V. Wang, “Full-wave Image Reconstruction in Transcranial Photoacoustic Computed Tomography using a Multiphysics Finite Element Method”, IEEE Transactions on Medical Imaging, in press (2024).
- A. V. Avachat, K. H. Mahmoud, A. G. Leja, J. J. Xu, M. A. Anastasio, M. Sivaguru, and A. D. Fulvio, “Ortho-positronium Lifetime For Soft-tissue Classification”, Scientific Reports, in press (2024).
- X. Zhang, E. C. Landsness, H. Miao, W. Chen, M. J. Tang, L.M. Brier, J. P. Culver, J. M. Lee, and M. A. Anastasio, “Attention-based CNN-BiLSTM for sleep state classification of spatiotemporal wide-field calcium imaging data“, Journal of Neuroscience Methods, 411, 110250 (2024).
- R. Deshpande, M. Özbey, H. Li, M. A. Anastasio, and F. J. Brooks, “Assessing the capacity of a denoising diffusion probabilistic model to reproduce spatial context“, IEEE Transactions on Medical Imaging, in press (2024).
- N. Goswami, M.A. Anastasio, and G.P. Popescu: Quantitative phase imaging techniques for measuring scattering properties of cells and tissues: A review-Part II, Journal of Biomedical Optics, In press, 2024.
- N. Goswami, M.A. Anastasio, and G.P. Popescu: Quantitative phase imaging techniques for measuring scattering properties of cells and tissues: A review-Part I, Journal of Biomedical Optics, In press, 2024.
- M. A. Anastasio, “Machine learning-enabled quantitative phase imaging: my collaborations with Prof. Gabi Popescu“, In Unconventional Optical Imaging IV. SPIE (2024).
- R. M. Cam, U. Villa, and M. A. Anastasio, “Learning a stable approximation of an existing but unknown inverse mapping: Application to the half-time circular Radon transform“, Inverse Problems, In press (2024)
- S. Manohar, I. Sechopoulos, M.A. Anastasio, L. Maier-Hein, and R. Gupta. Super Phantoms: Advanced models for testing medical imaging technologies, Communications Engineering, In press (2024)
- X. Zhang, M. Tan, M. Nabil, R. Shukla, S. Vasavada, S. Anandasabapathy, M.A. Anastasio and E. Petrova, “Deep learning-based image super-resolution of a novel end-expandable optical fiber probe for application in esophageal cancer diagnostics“, Journal of Biomedical Optics, 29(4), 046001 (2024).
- C. Zhang, Z. Fan, Z. Wang, L. Sun, Y. Hao, Z. Zhang, W. Thorstad, H. Gay, X. Wang, M. A. Anastasio and H. Li, “Transformer-based classifier with feature aggregation for cancer subtype classification on histopathological images“, In Medical Imaging 2024: Image Processing 2024. SPIE (2024).
- E.D.S Crafts., M.A. Anastasio, and U. Villa, “Bayesian Cramér-Rao bound optimization of the illumination pattern in quantitative photoacoustic computed tomography“, In Medical Imaging 2024: Physics of Medical Imaging 2024. SPIE (2024).
- F. Li, U. Villa, and M. A. Anastasio, “A learning-based method for compensating 3D-2D model mismatch in ring-array ultrasound computed tomography“, In Medical Imaging 2024: Ultrasonic Imaging and Tomography 2024, SPIE (2024).
- R. Deshpande, M.A. Anastasio, and F. J. Brooks, “Exploring a method to evaluate image-conditioned deep generative models for their capacity to reproduce domain-relevant spatial context“, In Medical Imaging 2024: Image Perception, Observer Performance, and Technology Assessment 2024. SPIE (2024)
- R. Deshpande, M. Özbey, H. Li, M. A. Anastasio, and F. J. Brooks, “Evaluating the capacity of a diffusion generative model to reproduce spatial context relevant to diagnostic imaging”, In Medical Imaging 2024: Image Perception, Observer Performance, and Technology Assessment 2024. SPIE (2024)
- N. Marshall, H. P. Brecht, W. Thompson, D. J. Lawrence, V. Marshall, S. Toler, S. Emelianov, A. Yu, M. A. Anastasio, U. Villa, and J. Maxwell, “High-throughput photoacoustic tomography by integrated robotics and automation”, In Photons Plus Ultrasound: Imaging and Sensing 2024. SPIE (2024)
- H. K. Huang, J. Kuo, S. Park, U. Villa, L. V. Wang, and M. A. Anastasio, “A learning-based image reconstruction method for skull-induced aberration compensation in transcranial photoacoustic computed tomography“, In Photons Plus Ultrasound: Imaging and Sensing 2024. SPIE (2024)
- R. M. Cam, S. Park, U. Villa, and M. A. Anastasio, “Investigation of a learned image reconstruction method for three-dimensional quantitative photoacoustic tomography of the breast“, In Photons Plus Ultrasound: Imaging and Sensing 2024. SPIE (2024).
- P. Chen, S. Park, R. M. Cam, H. K. Huang, U. Villa, and M. A. Anastasio, ” Learning a semi-analytic reconstruction method for photoacoustic computed tomography with hemispherical measurement geometries“, In Photons Plus Ultrasound: Imaging and Sensing 2024. SPIE (2024)
- Y. Shin, M.R. Lowerison, Y. Wang, X. Chen, Q. You, Z. Dong, M.A. Anastasio, and P. Song, “Context-Aware Deep Learning Enables High-Efficacy Localization of High Concentration Microbubbles for Super-Resolution Ultrasound Localization Microscopy“, Nature Communications, 15(1), 2932 (2024)
- N. Goswami, Y. Lee, G. Popescu, and M. A. Anastasio. “Optical label-free determination of mitochondrial dynamics using deep learning.” Bulletin of the American Physical Society (2024).
- N. Goswami, N. Winston, W. Choi, N. Z. E. Lai, R. B. Arcanjo, X. Chen, N. Sobh, R. A. Nowak, M. A. Anastasio and G. Popescu, “EVATOM: a novel embryo health assessment tool”, Communications Biology (2024).
- S. Subramaniam, M. Akay, M. A. Anastasio et al, “Grand Challenges at the Interface of Engineering and Medicine“, IEEE Open Journal of Engineering in Medicine and Biology, 5, 1-13 (2024).
- K. Li, U. Villa, H. Li, and M. A. Anastasio, “Application of Learned Ideal Observers for Estimating Task-Based Performance Bounds for Computed Imaging Systems”, IEEE Transactions on Computational Imaging (2024).
- Zhao, X. Peng, V. A. Kelkar, M. A. Anastasio, and F. Lam, “High-Dimensional MR Reconstruction Integrating Subspace and Adaptive Generative Models“, IEEE Transactions on Biomedical Engineering, 71(6), 1969-1979 (2024)
- R. M. Cam, C. Wang, W.
- S. Sengupta and M. A. Anastasio, “A Test Statistic Estimation-based Approach for Establishing Self-interpretable CNN-based Binary Classifiers“, IEEE Transactions on Medical Imaging (2024).
- L. Lozenski, H. Wang, F. Li, M. A. Anastasio, B. Wohlberg, Y. Lin, and U. Villa, “Learned Full Waveform Inversion Incorporating Task Information for Ultrasound Computed Tomography“, IEEE Transactions on Computational Imaging (2024).
2023
- G. Jeong, F. Li, U. Villa and M. A. Anastasio, “Investigating the Use of Traveltime and Reflection Tomography for Deep Learning-Based Sound-Speed Estimation in Ultrasound Computed Tomography,” arXiv (2023).
- V. A. Kelkar, R. Deshpande, A. Banerjee, and M. A. Anastasio. “AmbientFlow: Invertible generative models from incomplete, noisy imaging measurements.” In NeurIPS 2023 Workshop on Deep Learning and Inverse Problems. 2023.
- J. L. Granstedt, W. Zhou, and M. A. Anastasio. “Approximating the Hotelling observer with autoencoder-learned efficient channels for binary signal detection tasks.” Journal of Medical Imaging 10.5 (2023): 055501-055501.
- F. Li, U. Villa, N. Duric and M. A. Anastasio, “A forward model incorporating elevation-focused transducer properties for 3D full-waveform inversion in ultrasound computed tomography,” in IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (2023).
- W. Zhou, U. Villa and M. A. Anastasio, “Ideal Observer Computation by Use of Markov-Chain Monte Carlo with Generative Adversarial Networks,” in IEEE Transactions on Medical Imaging (2023).
- Q. You, M. R. Lowerison, Y. Shin, X. Chen, N. V. C. Sekaran, Z. Dong, D. A. Llano, M. A. Anastasio, and P. Song. “Contrast-free Super-resolution Power Doppler (CS-PD) based on Deep Neural Networks.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control (2023).
- S. Park, U. Villa, F. Li, R. M. Cam, A. A. Oraevsky, and M. A. Anastasio. “Stochastic three-dimensional numerical phantoms to enable computational studies in quantitative optoacoustic computed tomography of breast cancer.” Journal of Biomedical Optics 28, no. 6 (2023): 066002-066002.
- F. Li, U. Villa, N. Duric, and M. A. Anastasio. “3D full-waveform inversion in ultrasound computed tomography employing a ring-array.” In Proc. of SPIE Vol, vol. 12470, pp. 124700K-1. 2023.
- G. Jeong, F. Li, U. Villa, and M. A. Anastasio. “A deep learning-based image reconstruction method for USCT that employs multimodality inputs.” In Medical Imaging 2023: Ultrasonic Imaging and Tomography, vol. 12470, pp. 105-110. SPIE, 2023.
- A. J. Zhai, J. Kuo, M. A. Anastasio, and U. Villa. “Memory-efficient self-supervised learning of null space projection operators.” In Medical Imaging 2023: Physics of Medical Imaging, vol. 12463, pp. 311-317. SPIE, 2023.
- R. M. Cam, C. Wang, W. Thompson, S. A. Ermilov, M. A. Anastasio, and U. Villa. “Low-rank matrix estimation-based spatiotemporal image reconstruction from few tomographic measurements per frame for dynamic photoacoustic computed tomography.” In Medical Imaging 2023: Physics of Medical Imaging, vol. 12463, p. 124630R. SPIE, 2023.
- R. Deshpande, A. Avachat, F. J. Brooks, and M. A. Anastasio. “Assessing the applicability of a learning-based method for quantitative phase retrieval from propagation-based x-ray phase contrast images under benchtop conditions.” In Medical Imaging 2023: Physics of Medical Imaging, vol. 12463, p. 124632T. SPIE, 2023.
- S. Sengupta, M. Fanous, H. Li, and M. A. Anastasio. “Semi-supervised contrastive learning for white blood cell segmentation from label-free quantitative phase imaging.” In Medical Imaging 2023: Digital and Computational Pathology, vol. 12471, pp. 90-95. SPIE, 2023.
- K. Li, W. Zhou, H. Li, and M. A. Anastasio. “Estimating task-based performance bounds for image reconstruction methods by use of learned-ideal observers.” In Medical Imaging 2023: Image Perception, Observer Performance, and Technology Assessment, vol. 12467, pp. 120-125. SPIE, 2023.
- V. A. Kelkar, D. S. Gotsis, R. Deshpande, F. J. Brooks, K. C. Prabhat, K. J. Myers, R. Zeng, and M. A. Anastasio. “Evaluating generative stochastic image models using task-based image quality measures.” In Medical Imaging 2023: Image Perception, Observer Performance, and Technology Assessment, vol. 12467, pp. 304-310. SPIE, 2023.
- Z. E. Markow, K. Tripathy, J. W. Trobaugh, A. M. Svoboda, M. L. Schroeder, S. M. Rafferty, E J. Richter, A. T. Eggebrecht, M. A. Anastasio, and J. P. Culver. “Template-and model-based decoding of movie identities with high-density diffuse optical tomography of neural hemodynamics.” In Neural Imaging and Sensing 2023, p. PC1236503. SPIE, 2023.
- W. Fehner, M. Fogarty, M. A. Anastasio, and J. P. Culver. “Evaluation of multivariate approaches to functional connectivity mapping with fNIRS.” In Neural Imaging and Sensing 2023, p. PC123650C. SPIE, 2023.
- X. Zhang, E. C. Landsness, J. P. Culver, J. M. Lee, and M. A. Anastasio. “Attention-based CNN-BiLSTM for sleep state classification of spatiotemporal wide-field calcium imaging data“, Proc. SPIE 12365, Neural Imaging and Sensing 2023, 123650B.
- S. Park, U. Villa, A. Oraevsky, and M. A. Anastasio. “Numerical investigation of impact of skin phototype on three-dimensional optoacoustic tomography of the breast.” In Photons Plus Ultrasound: Imaging and Sensing 2023, p. PC123790E. SPIE, 2023.
- R. M. Cam, C. Wang, S. Park, W. Thompson, S. A. Ermilov, M. A. Anastasio, and U. Villa. “Dynamic image reconstruction to monitor tumor vascular perfusion in small animals using 3D photoacoustic computed-tomography imagers with rotating gantries.” In Photons Plus Ultrasound: Imaging and Sensing 2023, vol. 12379, pp. 78-83. SPIE, 2023.
- M. A. Anastasio “Deep learning and photoacoustic image formation: promises and challenges.” Photons Plus Ultrasound: Imaging and Sensing 2023. SPIE, 2023.
- R. Deshpande, A. Avachat, F. J. Brooks, and M. A. Anastasio. “Investigating the robustness of a deep learning-based method for quantitative phase retrieval from propagation-based x-ray phase contrast measurements under laboratory conditions.” Physics in Medicine & Biology (2023).
- V. A. Kelkar, D. S. Gotsis, F. J. Brooks, K. C. Prabhat, K. J. Myers, R. Zeng, and M. A. Anastasio. “Assessing the ability of generative adversarial networks to learn canonical medical image statistics.” IEEE Transactions on Medical Imaging (2023).
- W. Liu, X. Zhang, Y. Wen, M. A. Anastasio, and J. Irudayaraj. “A machine learning approach to elucidating PFOS-induced alterations of repressive epigenetic markers with single-cell imaging.” Environmental Advances (2023): 100344.
- C. Xi, M. E. Kandel, S. He, C. Hu, Y. J. Lee, K. Sullivan, G. Tracey, H.J. Chung, H.J. Kong, M. A. Anastasio, and G. Popescu. “Artificial confocal microscopy for deep label-free imaging.” Nature Photonics (2023): 1-9.
2022
- M.J. Fanous, S. He, S. Sengupta, K. Tangella, N. Sobh, M. A. Anastasio, and G. Popescu. “White blood cell detection, classification and analysis using phase imaging with computational specificity (PICS).” Scientific Reports (2022).
- W. Chen, X. Zhang, H. Miao, MJ. Tang, M. A. Anastasio, J. Culver, JM. Lee, EC. Landsness. “Validation of Deep Learning-based Sleep State Classification“. microPublication Biology (2022).
- L. Lozenski, M. A. Anastasio, and U. Villa. “A Memory-Efficient Dynamic Image Reconstruction Method using Neural Fields.” IEEE Transactions on Computational Imaging (2022).
- W. Liu, A. Padhi, X. Zhang, J. Narendran, M. A. Anastasio, A. S. Nain, and J. Irudayaraj. “Dynamic Heterochromatin States in Anisotropic Nuclei of Cells on Aligned Nanofibers.” ACS Nano (2022).
- V. Kelkar, D. S. Gotsis, F. J. Brooks, P. KC, K. J. Myers, R. Zeng, and M. A. Anastasio. “Assessing the ability of generative adversarial networks to learn canonical medical image statistics.” arXiv preprint arXiv:2204.12007 (2022).
- M. E. Zachary, K. Tripathy, J. W. Trobaugh, A. M. Svoboda, M. L. Schroeder, S. M. Rafferty, E. J. Richter, A. T. Eggebrecht, M. A. Anastasio, and J. P. Culver. “Template-based and model-based decoding of movie clip identities from brain hemodynamics with high-density diffuse optical tomography.” In Neural Imaging and Sensing 2022, p. PC119460I. SPIE, 2022.
- L. M. Brier, X. Zhang, A. R. Bice, S. H. Gaines, E. C. Landsness, JM Lee, M. A. Anastasio, and J. P. Culver. “A Multivariate Functional Connectivity Approach to Mapping Brain Networks and Imputing Neural Activity in Mice.” Cerebral Cortex 32, no. 8 (2022): 1593-1607.
- K. Li, H. Li, and M. A. Anastasio. “A task-informed model training method for deep neural network-based image denoising.” In Medical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment, vol. 12035, pp. 249-255. SPIE, 2022.
- R. Deshpande, M. A. Anastasio, and F. J. Brooks. “Evaluating the capacity of deep generative models to reproduce measurable high-order spatial arrangements in diagnostic images.” In Medical Imaging 2022: Image Processing, vol. 12032, pp. 521-526. SPIE, 2022.
- S. Sengupta, C. K. Abbey, K. Li, and M. A. Anastasio. “Investigation of adversarial robust training for establishing interpretable CNN-based numerical observers.” In Medical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment, vol. 12035, pp. 275-282. SPIE, 2022.
- F. Li, U. Villa, N. Duric, and M. A. Anastasio. “Investigation of an elevation-focused transducer model for three-dimensional full-waveform inversion in ultrasound computed tomography.” In Medical Imaging 2022: Ultrasonic Imaging and Tomography, vol. 12038, pp. 206-214. SPIE, 2022.
- L. Lozenski, M. A. Anastasio, and U. Villa. “Neural fields for dynamic imaging.” In Medical Imaging 2022: Physics of Medical Imaging, vol. 12031, pp. 231-238. SPIE, 2022.
- R. M. Cam, U. Villa, and M. A. Anastasio. “A learned filtered backprojection method for use with half-time circular radon transform data.” In Medical Imaging 2022: Physics of Medical Imaging, vol. 12031, pp. 787-792. SPIE, 2022.
- C. K. Abbey, S. Sengupta, W. Zhou, A. Badal, R. Zeng, F. W. Samuelson, M. P. Eckstein, K. J. Myers, M. A. Anastasio, and Jovan G. Brankov. “Analyzing neural networks applied to an anatomical simulation of the breast.” In Medical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment, vol. 12035, pp. 16-25. SPIE, 2022.
- V. A. Kelkar, D. S. Gotsis, F. J. Brooks, K. J. Myers, K. C. Prabhat, R. Zeng, and M. A. Anastasio. “Evaluating procedures for establishing generative adversarial network-based stochastic image models in medical imaging.” In Medical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment, vol. 12035, pp. 159-164. SPIE, 2022.
- J. L. Granstedt, F. Li, U. Villa, and M. A. Anastasio. “Learned Hotelling observers for use with multi-modal data.” In Medical Imaging 2022: Image Perception, Observer Performance, and Technology Assessment, vol. 12035, pp. 262-268. SPIE, 2022.
- F. Zong, V. Kelkar, M. A. Anastasio, and H. Li. “Application of DatasetGAN in medical imaging: preliminary studies.” In Medical Imaging 2022: Image Processing, vol. 12032, pp. 452-458. SPIE, 2022.
- V. A. Kelkar, and M. A. Anastasio. “Prior image-based medical image reconstruction using a style-based generative adversarial network.” In Medical Imaging 2022: Physics of Medical Imaging, vol. 12031, pp. 244-249. SPIE, 2022.
- X. Zhang, E. C. Landsness, J. P. Culver, and M. A. Anastasio. “Identifying functional brain networks from spatial-temporal wide-field calcium imaging data via a recurrent autoencoder.” In Neural Imaging and Sensing 2022, p. PC1194612. SPIE, 2022.
- Y. R. He, S. He, M. E. Kandel, Y. J. Lee, C. Hu, N. Sobh, M. A. Anastasio, and G. Popescu. “Cell cycle stage classification using phase imaging with computational specificity.” ACS photonics 9, no. 4 (2022): 1264-1273.
- J. Kuo, J. Granstedt, U. Villa, and M. A. Anastasio. “Computing a projection operator onto the null space of a linear imaging operator: tutorial.” JOSA A 39, no. 3 (2022): 470-481.
- A. A. Oraevsky, S. A. Ermilov, A. Conjusteau, and M. Anastasio. “Laser Optoacoustic Ultrasonic Imaging System (LOUIS) and Methods of Use.” U.S. Patent Application 17/516,138 filed February 24, 2022.
- S. Bhadra, U. Villa, and M.A. Anastasio. “Mining the manifolds of deep generative models for multiple data-consistent solutions of ill-posed tomographic imaging problems.” arXiv preprint arXiv:2202.05311 (2022).
- C. Hu, S. He, Y. J. Lee, Y. He, E. M. Kong, H. Li, M. A. Anastasio, and G. Popescu. “Live-dead assay on unlabeled cells using phase imaging with computational specificity.” Nature communications 13, no. 1 (2022): 1-8.
- X. Zhang, E. C. Landsness, W. Chen, H. Miao, M. Tang, L. M. Brier, J. P. Culver, JM Lee, and M. A. Anastasio. “Automated sleep state classification of wide-field calcium imaging data via multiplex visibility graphs and deep learning.” Journal of neuroscience methods 366 (2022): 109421.
- S. Park, F. J. Brooks, U. Villa, R. Su, M. A. Anastasio, A. A. Oraevsky, “Normalization of optical fluence distribution for three-dimensional functional optoacoustic tomography of the breast,” J. Biomed. Opt. 27(3) 036001 (16 March 2022).
- W.Zhou, S. Bhadra, F.J. Brooks, H. Li, M. A. Anastasio, “Learning stochastic object models from medical imaging measurements by use of advanced ambient generative adversarial networks,” J. Med. Imag. 9(1), 015503 (2022).
2021
- K. Li, W. Zhou, H. Li, and M. A. Anastasio, “A Hybrid Approach for Approximating the Ideal Observer for Joint Signal Detection and Estimation Tasks by Use of Supervised Learning and Markov-Chain Monte Carlo Methods.” IEEE Transactions on Medical Imaging (2021).
- X. Zhang, V. Kelkar, J. Granstedt, H. Li, M. A. Anastasio, “Impact of deep learning-based image super-resolution on binary signal detection,” J. Med. Imag. 8(6), 065501 (2021).
- L.M. Brier, X. Zhang, A.R. Bice, S.H. Gaines, E.C. Landsness, J. Lee, M. A. Anastasio, J.P. Culver, A Multivariate Functional Connectivity Approach to Mapping Brain Networks and Imputing Neural Activity in Mice, Cerebral Cortex, 2021, bhab282.
- F. Li, U. Villa, S. Park, and M. A. Anastasio “Three-dimensional stochastic numerical breast phantoms for enabling virtual imaging trials of ultrasound computed tomography.” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021.
- J. Geng, X. Zhang, S. Prabhu, S.H. Shahoei, E.R. Nelson, K.S. Swanson, M. A. Anastasio, and A.M. Smith, “3D Microscopy and Deep Learning Reveal the Heterogeneity of Crown-Like Structure Microenvironments in Intact Adipose Tissue,” Science Advances, 7(8), eabe2480.
- V. Kelkar, X. Zhang, J. Granstedt, H. Li, M. A. Anastasio, “Task-based evaluation of deep image super-resolution in medical imaging.” In Medical Imaging 2021: Image Perception, Observer Performance, and Technology Assessment, vol. 11599, p. 115990X. International Society for Optics and Photonics, 2021.
- A. Sharmila, X. Zhang, M. A. Anastasio, R. Richards-Kortum, and E.V. Petrova. “An optical, endoscopic brush for high-yield diagnostics in esophageal cancer.” In Endoscopic Microscopy XVI, vol. 11620, p. 116200B. International Society for Optics and Photonics, 2021.
- K. Li, W. Zhou, H. Li, and M. A. Anastasio “Assessing the Impact of Deep Neural Network-based Image Denoising on Binary Signal Detection Tasks.” IEEE Transactions on Medical Imaging, vol. 40, no. 9, pp. 2295-2305, Sept. 2021.
- S. Bhadra*, V. Kelkar*, F.J. Brooks, and M. A. Anastasio “On hallucinations in tomographic image reconstruction.” IEEE Transactions on Medical Imaging, 2021.
- A. Pattyn, Z. Mumm, N. Alijabbari, N. Duric, M. A. Anastasio, M. Mehrmohammadi “Model-based optical and acoustical compensation for photoacoustic tomography of heterogeneous mediums.” Photoacoustics, p.100275, 2021.
- K. Li, W. Zhou, H. Li, and M. A. Anastasio “Task-based performance evaluation of deep neural network-based image denoising.” In Medical Imaging 2021: Image Perception, Observer Performance, and Technology Assessment, vol. 11599, p. 115990L. International Society for Optics and Photonics, 2021.
- K. Li, W. Zhou, H. Li, and M. A. Anastasio “Supervised learning-based ideal observer approximation for joint detection and estimation tasks.” In Medical Imaging 2021: Image Perception, Observer Performance, and Technology Assessment, vol. 11599, p. 115990F. International Society for Optics and Photonics, 2021.
- J. Kuo, J. Granstedt, U. Villa, and M. A. Anastasio “Learning a projection operator onto the null space of a linear imaging operator.” In Medical Imaging 2021: Physics of Medical Imaging, vol. 11595, p. 115953X. International Society for Optics and Photonics, 2021.
- S. Bhadra, V. Kelkar, F.J. Brooks, and M. A. Anastasio “Assessing regularization in tomographic imaging via hallucinations in the null space.” In Medical Imaging 2021: Image Perception, Observer Performance, and Technology Assessment, vol. 11599, p. 115990N. International Society for Optics and Photonics, 2021.
- F. Li, U. Villa, S. Park, S. He, and M. A. Anastasio “A framework for ultrasound computed tomography virtual imaging trials that employs anatomically realistic numerical breast phantoms.” In Medical Imaging 2021: Ultrasonic Imaging and Tomography, vol. 11602, p. 116020V. International Society for Optics and Photonics, 2021.
- J.P. Phillips, E.Y. Sidky, G. Ongie, W. Zhou, J. Cruz-Bastida, I.S. Reiser, M. A. Anastasio, and X. Pan “A hybrid channelized Hotelling observer for estimating the ideal linear observer for total-variation-based image reconstruction.” In Medical Imaging 2021: Image Perception, Observer Performance, and Technology Assessment, vol. 11599, p. 115990D. International Society for Optics and Photonics, 2021.
- V. Kelkar, S. Bhadra, and M. A. Anastasio “Medical image reconstruction using compressible latent space invertible networks.” In Medical Imaging 2021: Physics of Medical Imaging, vol. 11595, p. 115951S. International Society for Optics and Photonics, 2021.
- J. Granstedt, V. Kelkar, W. Zhou, and M. A. Anastasio “SlabGAN: a method for generating efficient 3D anisotropic medical volumes using generative adversarial networks.” In Medical Imaging 2021: Image Processing, vol. 11596, p. 1159617. International Society for Optics and Photonics, 2021.
- W. Zhou, S. Bhadra, F.J. Brooks, J. Granstedt, H. Li and M. A. Anastasio “Advancing the AmbientGAN for learning stochastic object models.” In Medical Imaging 2021: Image Perception, Observer Performance, and Technology Assessment, vol. 11599, p. 115990A. International Society for Optics and Photonics, 2021.
- V.A. Kelkar, S. Bhadra, and M. A. Anastasio, “Compressible Latent-Space Invertible Networks for Generative Model-Constrained Image Reconstruction,” IEEE Transactions on Computational Imaging 7 (2021): 209-223
- V. A. Kelkar, M. A. Anastasio “Prior image-constrained reconstruction using style-based generative models.” Proceedings of the 38th International Conference on Machine Learning, 2021
- M. A. Anastasio, T. Matthews, and B. Kelly “Deep learning-assisted image reconstruction for tomographic imaging.” United States patent application US 16/616,742. 2021 May 20.
- B. Shabestri, M. A. Anastasio, B. Fei, F. Leblond “Special Series Guest Editorial: Artificial Intelligence and Machine Learning in Biomedical Optics.” Journal of biomedical optics. 2021 May;26(5).
- C. Hu, S. He, Y.J. Lee, Y. He, M. A. Anastasio, and G. Popescu. “Label-free cell viability assay using phase imaging with computational specificity (PICS).” Quantitative Phase Imaging VII, vol. 11653, p. 116531D. International Society for Optics and Photonics, 2021.
- Y.R. He, S. He, M. Kandel, Y.J. Lee, N. Sobh, M. A. Anastasio, and G. Popescu. “Cell cycle detection using phase imaging with computational specificity (PICS).” Quantitative Phase Imaging VII 2021 Mar 5 (Vol. 11653, p. 116531R). International Society for Optics and Photonics.
- K. Tripathy, Z.E. Markow, A.K. Fishell, A. Sherafati, T.M. Burns-Yocum, M.L. Schroeder, A.M. Svoboda, A.T. Eggebrecht, M. A. Anastasio, B.L. Schlaggar, J.P. Culver. “Decoding visual information from high-density diffuse optical tomography neuroimaging data.” Neuroimage. 2021 Feb 1;226:117516.
2020
- S. He, W. Zhou, H. Li, and M.A. Anastasio, “Learning Numerical Observers using Unsupervised Domain Adaptation,” Proceedings of SPIE on Medical Imaging 2020.
- J.L., Granstedt, W. Zhou, and M.A. Anastasio, “Approximating the Hotelling Observer with Autoencoder-Learned Efficient Channels for Binary Signal Detection Tasks.,” Proceedings of SPIE on SPIE Medical Imaging 2020.
- S. Bhadra, W. Zhou, and M.A. Anastasio, “Medical image reconstruction with image-adaptive priors learned by use of generative adversarial networks,” Proceedings of SPIE on Medical Imaging 2020.
- W. Zhou and M.A. Anastasio, “Markov-Chain Monte Carlo Approximation of the Ideal Observer using Generative Adversarial Networks.,” Proceedings of SPIE on Medical Imaging 2020.
- W., Zhou, S., Bhadra, F.J., Brooks, H., Li and M.A. Anastasio,”Progressively-Growing AmbientGANs For Learning Stochastic Object Models From Imaging Measurements,” Proceedings of SPIE on Medical Imaging 2020.
- W. Thompson, A. Yu, D.S. Dumani, J. Cook, M.A. Anastasio, S.Y. Emelianov, and S.A. Ermilov “A preclinical small animal imaging platform combining multi-angle photoacoustic and fluorescence projections into co-registered 3D maps,” Proceedings of SPIE on Photons Plus Ultrasound: Imaging and Sensing 2020.
- B. Shrestha, F. DeLuna, M.A. Anastasio, J. Ye, and E. Brey, “Photoacoustic Imaging in Tissue Engineering and Regenerative Medicine,” Tissue Engineering (2020).
- Y. Chen, C.K. Hagen, A. Olivo, and M.A. Anastasio, “A partial-dithering strategy for edge-illumination X-ray phase-contrast tomography enabled by a joint reconstruction method,” Physics in Medicine & Biology (2020).
- J. Poudel, S. Na, L. Wang, and M.A. Anastasio, “Iterative image reconstruction in transcranial photoacoustic tomography based on the elastic wave equation,” Physics in Medicine and Biology (2020).
- Y. Chen, W. Zhou, C. Hagen, A. Olivo, M.A. Anastasio, “Comparison of data-acquisition designs for single-shot edge-illumination X-ray phase-contrast tomography,” Optics Express. 2020.
- K. Minn, Y. Fu, S. He, S. George, M.A. Anastasio, S.A. Morris, and L. Solnica-Krezel, “High-resolution transcriptional and morphogenetic profiling of cells from micropatterned human embryonic stem cell gastruloid cultures. ,” bioRxiv. (2020).
- A. Adler, H. Ammari, M.A. Anastasio, S.R. Arridge, L. Bar, W. Benger, M. Bertero, B. Borden, JM. Borwein, A.M. Bronstein, and M.M. Bronstein, “Handbook of mathematical methods in imaging,” 2020.
- K.S. Uddin, M. Zhang, M.A. Anastasio, and Q. Zhu, “Optimal breast cancer diagnostic strategy using combined ultrasound and diffuse optical tomography ,” Biomedical Optics Express. 2020.
- W. Zhou, H. Li, and M.A. Anastasio “Approximating the Ideal Observer for joint signal detection and localization tasks by use of supervised learning methods ,” IEEE Transactions on Medical Imaging, July 2020.
- W. Zhou, S. Bhadra, F.J. Brooks, H. Li, and M.A. Anastasio, “Learning stochastic object models from medical imaging measurements using Progressively-Growing AmbientGANs,” Submitted to Transactions on Medical Imaging.
- J. Poudel and M.A. Anastasio, “Joint reconstruction of initial pressure distribution and spatial distribution of acoustic properties of elastic media with application to transcranial photoacoustic tomography,” Inverse Problems (2020).
- S. He, K.T. Minn, L. Solnica-Krezel, M.A. Anastasio and H. Li, “Deeply-Supervised Density Regression for Automatic Cell Counting in Microscopy Images.,” Medical Image Analysis, p.101892. (2020).
- K.T. Minn, Y.C. Fu, S. He, S.C. George, M.A. Anastasio, S.A. Morris, and L. Solnica-Krezel, “High-Resolution Transcriptional and Morphogenetic Profiling of Cells from Micropatterned Human Embryonic Stem Cell Gastruloid Cultures.,” eLife (2020).
- K. Tripathy, Z.E. Markow, A.K. Fishell, A. Sherafati, T.M. Burns-Yocum, M.L. Schroeder, A.M. Svoboda, A.T. Eggebrecht, M.A. Anastasio, B.L. Schlaggar, and J.P. Culver, “Decoding visual information from high-density diffuse optical tomography neuroimaging data.,” NeuroImage (2020).
2019
- Y. Lou, S. Park, F. Anis, R. Su, A. Oraevesky, and M.A. Anastasio, “Analysis of the use of unmatched backward operators in iterative image reconstruction with application to three-dimensional optoacoustic tomography,” IEEE Transactions on Computational Imaging (2019).
- J. Poudel, Y. Lou, and M.A. Anastasio, “A survey of computational frameworks for solving the acoustic inverse problem in three-dimensional photoacoustic computed tomography,” Phys. Med. Biol., 2019.
- W. Zhou, H. Li, and M.A. Anastasio, “Approximating the Ideal Observer and Hotelling Observer for binary signal detection tasks by use of supervised learning methods,” IEEE Transactions on Medical Imaging, 2019 Apr.
- S.S. Alshahrani, Y. Yan, N. Alijabbari, A. Pattyn, I, Avrutsky, E. Malyarenko, J Poudel, M.A. Anastasio, and M. Mehrmohammadi, “All-reflective ring illumination system for photoacoustic tomography,” J. of Biomedical Optics, 24(4), 046004 (2019).
- J. Wu, C. Lian, S. Ruan, T. Mazur, S. Mutic, M.A. Anastasio, P, Grigsby, P. Vera, and H. Li, “Treatment Outcome Prediction for Cancer Patients Based on Radiomics and Belief Function Theory,” IEEE Transactions on Radiation and Plasma Medical Sciences, 2019 Mar;3(2):216-24.
- J. Brown, S. Somo, F. Brooks, S. Komarov, W. Zhou, M.A. Anastasio, and E. Brey, “X-Ray CT in Phase Contrast Enhancement Geometry of Alginate Microbeads,” Annals of Biomedical Engineering (2019).
- F.J. Brooks, S.P. Gunsten, S.K. Vasireddi, S.L. Brody, and M.A. Anastasio, “Quantification of image texture in X‐ray phase‐contrast‐enhanced projection images of in vivo mouse lungs observed at varied inflation pressures“, Physiological Reports (2019).
2018
- T.P. Matthews, J. Poudel, L. Lei, L.V. Wang, and M.A. Anastasio, “Parameterized joint reconstruction of the initial pressure and sound speed distributions for photoacoustic computed tomography,” SIAM J. Imaging Sci 11, no. 2 (2018): 1560-1588.
- Y. Chen and M.A. Anastasio, “Properties of a Joint Reconstruction Method for Edge-Illumination X-Ray Phase-Contrast Tomography,” Sensing and Imaging (2018) 19: 7.
- S. Dolly, Y. Lou, M.A. Anastasio, and H. Li, “Learning-based Stochastic Object Models for Characterizing Anatomical Variations,” Physics in Medicine and Biology 63, no. 6 (2018): 065004.
- J. Wu, T. Mazur, Su Ruan, C. Lian, N. Daniel, H. Lashmett, L. Ochoa, I. Zoberi, M. A. Anastasio, M. Gach, S. Mutic, M. Thomas, H. Li, “A Deep Boltzmann Machines-Driven Level-Set Method for Heart Motion Tracking Using Cine MRI Images,” Medical Image Analysis 47 (2018): 68-80.
- H. Guan, C.K. Hagen, A. Olivo, and M.A. Anastasio, “Subspace-Based Resolution-Enhancing Image Reconstruction Method for Few-View Differential Phase-Contrast Tomography“, J. Med. Imag. 5(2), 023501 (2018).
- A.H. Lumpkin, A.B. Garson, M.A. Anastasio, “First point-spread function and x-ray phase-contrast imaging results with an 88-mm diameter single crystal“, Review of Scientific Instruments. 89, 073704 (2018).
- Y. Chen, L. Yang, W. Kun, M.A. Kupinski, and M.A. Anastasio, “Reconstruction-Aware Imaging System Ranking by use of a Sparsity-Driven Numerical Observer Enabled by Variational Bayesian Inference.” IEEE transactions on medical imaging (2018).
2017
- K.M.S. Uddin, A. Mostafa, M.A. Anastasio, Q. Zhu, “Two Step Imaging Reconstruction using Truncated Pseudoinverse as an initial estimate in Ultrasound guided Diffuse optical tomography“, Biomed. Opt. Express 8(12), 5437-5449 (2017).
- T.P. Matthews, M.A. Anastasio, “Joint reconstruction of the initial pressure and speed of sound distributions from combined photoacoustic and ultrasound tomography measurements“, Inverse Problems (2017).
- B. Kelly, T.P. Matthews, M.A. Anastasio, “Deep Learning-Guided Image Reconstruction from Incomplete Data”, eprint arXiv:1709.00584
- A. Zamir, C. Hagen, P. Diemoz, M. Endrizzi, F. Vittoria, Y. Chen, M.A. Anastasio, A. Olivo, “Recent advances in edge illumination tomography“, Journal of Medical Imaging. 2017 Oct;4(4):040901.
- K. Mitsuhashi, J. Poudel, T.P.Matthews, A. Garcia-Uribe, L.V. Wang and M.A. Anastasio, “A forward-adjoint operator pair based on the elastic wave equation for use in transcranial photoacoustic computed tomography“, SIAM J. Imaging Sci., 10(4), 2022–2048. 2017 Nov.
- T.P. Matthews, K. Wang, C. Li, N. Duric, M.A. Anastasio, “Regularized Dual Averaging Image Reconstruction for Full-Wave Ultrasound Computed Tomography“, IEEE Trans. UFFC, Volume: 64, Issue: 5, 811-825, May 2017.
- J. Poudel, T.P. Matthews, L. Li, M.A. Anastasio, L.V. Wang; “Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method.” J. Biomed. Opt. 0001;22(4):041018.
- Y. Lou, W. Zhou, T. P. Matthews, C. M. Appleton, M. A. Anastasio, “Generation of anatomically realistic numerical phantoms for photoacoustic and ultrasonic breast imaging,” J. Biomed. Opt. 22(4), 041015 (2017).
- Y. Chen, H. Guan, C. K. Hagen, A. Olivo, and M. A. Anastasio, “Single-shot edge illumination x-ray phase-contrast tomography enabled by joint image reconstruction,” Opt. Lett. 42, 619-622 (2017)
2016
- H. Li, S. Dolly, H.C Chen, M.A. Anastasio, DA. Low, H.H. Li, J.M. Michalski, W.L. Thorstad, H. Gay, S. Mutic: “A Comparative Study Based on Image Quality and Clinical Task Performance for CT Reconstruction Algorithms in Radiotherapy“, Journal of Applied Clinical Medical Physics. 2016 Jul 8;17(4).
- A.A. Appel, V. Ibarra, S.I. Somo, J.C. Larson, A.B. Garson III, H. Guan, J.P. McQuiling, Z. Zhong, M.A. Anastasio, E.C. Opara, E.M. Brey: “Imaging of Hydrogel Microsphere Structure and Foreign Body Response Based on Endogenous X-ray Phase Contrast“, Tissue Engineering, Part C, vol 22 number 11, 2016.
- Y. Lou, K. Wang, A.A. Oraevsky, M.A. Anastasio: “Impact of non-stationary optical illumination on image reconstruction in optoacoustic tomography“, Journal of the Optical Society of America A, 33(12): 2333-2347, 2016.
- C. Huang, K. Wang, R. Schoonover, L.V. Wang, and M.A. Anastasio: ” Joint Reconstruction of Absorbed Optical Energy Density and Sound Speed Distributions in Photoacoustic Computed Tomography: A Numerical Investigation “, IEEE Transactions on Computational Imaging, 2.2, 136-149, 2016.
- Q. Xu, A. Sawatzky, T. Jun, D. Yang, and M.A. Anastasio: ” Accelerated Fast Iterative Shrinkage Thresholding Algorithms for Sparsity-Regularized Cone-Beam CT Image Reconstruction “, Medical Physics, 43; 1849, 2016.
- H-C Chen, S. Dolly, H. Li, B Fischer-Valuck, J Dempsey, S. Mutic, M.A. Anastasio, and H. Li. ” An Integrated-Model Driven Method for In-treatment Upper Airway Motion Tracking using Cine MRI in Head & Neck Radiation Therapy “, Medical Physics, 43.8, 4700-4710, 2016.
- S. Dolly, H-C Chen, M.A. Anastasio, S. Mutic, and H. Li: ” Practical Considerations for Noise Power Spectra Estimation for Clinical CT Scanners “, Journal of Applied Clinical Medical Physics, Vol. 17:3, 2016.
- V. Ibarra, A. Appel, E. Opara, M.A. Anastasio and E.M Brey: ” Evaluation of the Tissue Response to Alginate Encapsulated Islets in an Omentum Pouch Mode “, Journal of Biomedical Materials Research: Part A, 2016.
- L. Li, J. Xia, G. Li, A Garcia-Uribe, Q. Sheng, M.A. Anastasio, and L.V. Wang: ” Label-free Photoacoustic Tomography of Whole Mouse Brain Structures Ex Vivo “, Journal of Neurophotonics, 3.3, 035001-035001. 2016.
2015
- Q. Sheng, K. Wang, M. P. Matthews, J. Xia, L. Zhu, L. V. Wang, and M. A. Anastasio, “A constrained variable projection reconstruction method for photoacoustic computed tomography without accurate knowledge of transducer responses,”Medical Imaging, IEEE Transactions on, in press, (2015).
- S. A. Ermilov, R. Su, A. Conjusteau, T. Oruganti, K. Wang, F. Anis, M. A. Anastasio, A. A. Oraevsky, “Three-dimensional optoacoustic and laser-induced ultrasound tomography system for preclinical research“, Ultrasonic Imaging , (2015).
- H. Guan, Q. Xu, A. B. Garson III, and M. A. Anastasio, “ Boundary-enhancement in propagation-based X-ray phase contrast tomosynthesis improves depth position characterization,” Physics in Medicine and Biology , 60 (8) N151, (2015).
- K. Wang, T. P. Matthews, F. Anis, C. Li, N. Duric, and M. A. Anastasio. “ Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography“, Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions , 62 (3): 475-493, (2015).
- A. A. Alyssa, J. C. Larson, A. B. Garson, H. Guan, Z. Zhong, B. B. Nguyen, J. P. Fisher, M. A. Anastasio, and E. M. Brey. “ X‐ray phase contrast imaging of calcified tissue and biomaterial structure in bioreactor engineered tissues“, Biotechnology and bioengineering , 112(3): 612-620, (2015).
- H. Chen, J. Tan, S. Dolly, J. Kavanaugh, M. A. Anastasio, D. A. Low, H. Li et al. “ Automated contouring error detection based on supervised geometric attribute distribution models for radiation therapy: A general strategy “, Medical physics, 42(2): 1048-1059, (2015).
2014
- J. Xia; W. Chen, K. Maslov, M. A. Anastasio, L. V. Wang, “ Retrospective respiration-gated whole-body photoacoustic computed tomography of mice,” J. Biomed. Opt. 19 (1), 016003 (2014).
- K. Mitsuhashi, K. Wang, and M.A. Anastasio, “Investigation of the far-field approximation for modeling a transducer’s spatial impulse response in photoacoustic computed tomography,” Photoacoustics, Volume 2, Issue 1, Pages 21–32 (2014).
- C.O. Schirra, B. Brendel, M.A. Anastasio, and E. Roessl, “Spectral CT: a technology primer for contrast agent development,” Contrast Media & Molecular Imaging, Volume 9, Issue 1, pages 62–70, (2014).
- K. Wang, R.W. Schoonover Su, A.A. Oraevsky, M.A. Anastasio, “Discrete Imaging Models for Three-Dimensional Optoacoustic Tomography using Radially Symmetric Expansion Functions,” Medical Imaging, IEEE Transactions on, vol.33, no.5, pp.1180,1193, (2014).
- Q. Xu, A. Sawatzky, E. Roessl, M.A. Anastasio, and C.O. Schirra, “Sparsity-regularized image reconstruction of decomposed K-edge data in spectral CT,” Phys. Med. Biol., 59 N65 (2014).
- K. Wang, J. Xia, C. Li, L.V. Wang,a and M.A. Anastasio, “Fast spatiotemporal image reconstruction based on low-rank matrix estimation for dynamic photoacoustic computed tomography,” J. Biomed. Opt., 19(5), 056007 (2014).
- A. Sawatzky, Q. Xu, C.O. Schirra, and M.A. Anastasio, “Proximal ADMM for Multi-Channel Image Reconstruction in Spectral X-ray CT,” Medical Imaging, IEEE Transactions on, vol.33, no.8, pp.1657,1668, (2014).
- H. Li, L. Yu, M.A. Anastasio, H. Chen, J. Tan, H. Gay, J.M. Michalski, D.A. Low and S. Mutic, “Automatic CT simulation optimization for radiation therapy: A general strategy,” Med. Phys. 41, 031913 (2014);
- G. Li, J. Xia, K. Wang, K. Maslov, M.A. Anastasio, L. V. Wang ,“Tripling the detection view of high-frequency linear-array-based photoacoustic computed tomography by using two planar acoustic reflectors”, Quantitative Imaging in Medicine and Surgery , 2014.
2013
- C.O. Schirra, E. Roessl, T. Koehler, B. Brendel, A. Thran, D. Pan, M.A. Anastasio, R. Proksa, “Statistical Reconstruction of Material Decomposed Data in Spectral CT,” IEEE Trans Med Imaging 32(7):1249-57 (2013)
- A.A. Appel, M.A. Anastasio, J.C. Larson, E.M. Brey, “Imaging challenges in biomaterials and tissue engineering,” Biomaterials 34(28):6615-30 (2013)
- A.A. Appel, C-Y Chou, J.C. Larson, Z. Zhong, F.J. Schoen, C.M. Johnston, E.M. Brey and M.A. Anastasio, “An initial evaluation of analyser-based phase-contrast X-ray imaging of carotid plaque microstructure,” Br J Radiol 86(1021):20120318 (2013).
- K. Wang, C. Huang, Y Kao, C-Y Chou, A.A. Oraevsky, M.A. Anastasio, “Accelerating image reconstruction in three-dimensional optoacoustic tomography on graphics processing units,” Med. Phys. 40, 023301 (2013).
- C. Huang, K. Wang, L. Nie, L.V. Wang, M.A. Anastasio, “Full-Wave Iterative Image Reconstruction in Photoacoustic Tomography With Acoustically Inhomogeneous Media,” Medical Imaging, IEEE Transactions on vol.32, no.6, pp.1097,1110 (2013).
- A.B. Garson, E.W. Izaguirre, S.G. Price, M.A. Anastasio, “Characterization of speckle in lung images acquired with a benchtop in-line x-ray phase-contrast system,” Phys Med Biol. 58(12):4237-53 (2013).
- J. Xia, C. Huang, K. Maslov, M.A. Anastasio, and L.V. Wang, “Enhancement of photoacoustic tomography by ultrasonic computed tomography based on optical excitation of elements of a full-ring transducer array,” Optics Letters, Vol. 38, Issue 16, pp. 3140-3143 (2013)
2012
- A.A. Appel, C-Y Chou, J.C. Larson, Z. Zhong, F.J. Schoen, C.M. Johnston, E.M. Brey and M.A. Anastasio, “Analyzer-based phase-contrast x-ray imaging of carotid plaque microstructure,” The American Journal of Surgery Volume 204, Issue 5 (2012).
- A.M. Zysk, J.G. Brankov, M.N. Wernick and M.A. Anastasio, “Adaptation of a clustered lumpy background model for task-based image quality assessment in x-ray phase-contrast mammography,” Med. Phys. 39, 906 (2012).
- A.M. Zysk, R.W. Schoonover, Q. Xu, and M.A. Anastasio, “A framework for computing the spatial coherence effects of polycapillary x-ray optics,” Opt. Express 20, 3975–3982 (2012).
- C. Huang, L. Nie, R.W. Schoonover, L.V. Wang, M.A. Anastasio, “Photoacoustic computed tomography correcting for heterogeneity and attenuation,” J. Biomed. Opt., 17, 061211 (2012).
- R.W. Schoonover, L.V. Wang, M.A. Anastasio, “A numerical investigation of the effects of shear waves in transcranial photoacoustic tomography with a planar geometry,” J. Biomed. Opt. 17, 061215 (2012).
- J.S. Sandu, R.W. Schoonover, J.I. Weber, J. Tawiah, V. Kunin, M.A. Anastasio, “Transducer field imaging using Acoustography,” Adv. Acoust. Vib., 275875 (2012).
- C. Huang, L. Nie, R.W. Schoonover, Z. Guo, C.O. Schirra, M.A. Anastasio, L.V. Wang, “Aberration correction for transcranial photoacoustic tomography of primates employing adjunct data,” J. Biomed. Opt. 17, 066016 (2012).
- A.M. Zysk, A.B. Garson, Q. Xu, E.M. Brey, W. Zhou, J.G. Brankov, M.N. Wernick, J.R. Kuszak, and M.A. Anastasio, “Nondestructive volumetric imaging of tissue microstructure with benchtop x-ray phase-contrast tomography and critical point drying,” Biomedical Optics Express, 3, 1924-1932 (2012).
- Q. Xu, E.Y. Sidky, X. Pan, M. Stampanoni, P. Modregger, and M.A. Anastasio, “Investigation of discrete imaging models and iterative image reconstruction in differential X-ray phase-contrast tomography,” Optics Express, 20, 10724-10749 (2012).
- J. Xia, M.R. Chatni, K.I. Maslov, Z. Guo, K. Wang, M.A. Anastasio, and L.V. Wang “Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo,” J. Biomed. Opt. 17, 050506 (2012).
- K. Wang, R. Su, A.A. Oraevsky and M.A. Anastasio, “Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography,” Phys. Med. Biol., 57, 5399 (2012).
- A. A. Appel, C-Y. Chou, H. P. Greisler, J. C. Larson, S. Vasireddi, Z. Zhong, M. A. Anastasio, E. M. Brey, “Analyzer-based phase-contrast x-ray imaging of carotid plaque microstructure,” Br J Radiol, 204(5) 631-636 (2012).
- A. Tamhane, K. Arfanakis, M.A. Anastasio, X. Guo, M. Vannier, J. Gao, “Rapid PROPELLER- MRI: A combination of iterative reconstruction and under-sampling,” J. Magn. Reson. Imaging, 36, 1241-1247, (2012).
- L. Nie, X. Cai, K. Maslov, A. Garcia-Uribe, M. A. Anastasio, L. V. Wang, “Photoacoustic tomography through a whole adult human skull with a photon recycler,” J. Biomed. Opt., 17(11), 110506 (Nov 02, 2012).
- K. Wang and M. A. Anastasio, “A simple Fourier transform-based reconstruction formula for photoacoustic computed tomography with a circular or spherical measurement geometry,” Phys. Med. Biol., 57 N493, (2012).
2011
- M. Roumeliotis, R.Z. Stodilka, M.A. Anastasio, E. Ng and J.L. Carson, “Singular value decomposition analysis of a photoacoustic imaging system and 3D imaging at 0.7 FPS,” Optics Express, 19, 13405-13417 (2011).
- R.W. Schoonover, M.A. Anastasio, “Image reconstruction in photoacoustic tomography involving layered acoustic media,” J. Opt. Soc. Am. A, 28, 1114–1120 (2011).
- R.W. Schoonover, M.A. Anastasio, “Compensation of shear waves in photoacoustic tomography with layered acoustic media,” J. Opt. Soc. Am. A, 28, 2091–2099 (2011).
- A. Appel, M.A. Anastasio, and E.B. Brey, “Potential for Imaging Engineered Tissues with X-ray Phase Contrast,” Tissue Engineering Part B: Reviews, 17, 321-330 (2011).
- K. Wang, S.A. Ermilov, R. Su, H.P. Brecht, A.A. Oraevsky M.A. Anastasio, “An imaging model incorporating ultrasonic transducer properties for three-dimensional optoacoustic tomography” Medical Imaging, IEEE Transactions on, 30, 203-214, (2011).
2010
- E.Y. Sidky, M.A. Anastasio, and X. Pan, “Image reconstruction exploiting object sparsity in boundary-enhanced X-ray phase-contrast tomography” Optics Express, 18, 10404-10422 (2010).
- M. Roumeliotis, R.Z. Stodilka, M.A. Anastasio, G. Chaudhary, H. Al-Aabed, E. Ng, A. Immucci and J.L. Carson, “Analysis of a photoacoustic imaging system by the crosstalk matrix and singular value decomposition” Optics Express, 18, 11406-11417 (2010).
- M.A. Anastasio, C.Y. Chou, A.M. Zysk, and J.G. Brankov, “Analysis of ideal observer signal detectability in phase-contrast imaging employing linear shift-invariant optical systems,” J. Opt. Soc. Am. A, 27, 2648-2659 (2010).
- A.M. Zysk, R.W. Schoonover, P.S. Carney, M.A. Anastasio, “Transport of intensity and spectrum for partially coherent fields,” Opt. Lett., 35, 2239–2241 (2010).
- E.Y. Sidky, M. A. Anastasio, and X. Pan, “Image Reconstruction Exploiting Object Sparsity in Boundary-Enhanced Phase-Contrast Tomography,” Optics Express, 18, pp. 10404-10422 (2010).
- E. M. Brey, A. Appel, Y-C. Chiu, Z. Zhong, and M. A. Anastasio, “X-Ray Imaging of Poly(ethylene glycol) Hydrogels Without Contrast Agents,” Tissue Engineering Part C: Methods, 16, 1597-1600 (2010).
Book Chapters:
- P. La Rivière, J. Zhang, and M. A. Anastasio, “Image Reconstruction in Optoacoustic Tomography Accounting for Frequency-Dependent Attenuation,” Photoacoustic Imaging and Spectroscopy, edited by Lihong V . Wang, (CRC Press, 2009), pp. 145–154.
- K. Wang and M. A. Anastasio, “Photoacoustic and thermoacoustic tomography: image formation principles,” Handbook of Mathematical Methods in Imaging, edited by Otmar Scherzer, (Springer, 2011), pp. 781-815.